91精品人妻无码,亚洲AV第二区国产精品,四川少妇搡bbbb搡bbbb,少妇做爰猛烈进入A片视频,四川少妇搡BBBBB搡BBB

Menu
How do organic trace minerals improve egg quality?
Source:Time:2020-08-06Author:By Dr. Xue LIN, Guangda YANG, Engineering Research Center, Guangzhou Tanke Bio-Tech Co., Ltd.

Introduction
Normally, 6%-10% of eggs are lost before putting into market due to problems related to the eggshell quality (thin-shell, soft-shell, shell-less, uneven coloring, streaked, micro-cracks, etc.), which is caused by different nutritional strategies, especially trace mineral nutrition and supplementation. And trace minerals including zinc (Zn), iron (Fe), copper (Cu), manganese (Mn) and selenium (Se) have been considered to improve eggshell quality.


Most mineral sources used in daily diets for laying hens are derived from inorganic compounds such as oxides, sulfates, carbonates, and phosphates. However, absorption of these minerals is inhibited because there are antagonisms and interactions between minerals and feed components. And contaminants (strong oxidants, heavy metals) in feed also decrease seriously the health of hens and feed quality. Currently, organic minerals are emerging as a more reliable source to improve eggshell quality without worrying the environmental mineral excretions. Chemically, metal ions link to amino acids through covalent bond to form chelates with stable structures and high mineral bioavailability. Basing on this stable structure, mineral amino acid chelate supplies efficiently mineral nutrition to hens.


Structure of Egg and Eggshell


         

 Figure1A                                                                                  Figure1B

Figure1A. Longitudinal section to depict the interior contents of a chicken egg: the egg is composed of a central yolk surrounded by the albumen (egg white), eggshell membranes, calcified eggshell and cuticle.

Figure1B. Artistic rendition of cross-sectional view of chicken eggshell: Themammillary layer is a regular array of cones or knobs, each with a core of concentrated organic material that was originally described as neutral mucopolysaccharide and contains keratan sulfate; The palisade layer is made up of groups of columns that are perpendicular to the eggshell surface and extend outwards from the mammillary cones; Vertical crystal layer: high density crystalline structure; Pores that traverse the eggshell permit the diffusion of metabolic gases and water vapor. Cuticular material spans the pore opening and fills in the upper pore space (MT Hincke, Y Nys, 2012).


Roles of Trace Minerals in Eggshell Formation  

Main roles of some trace minerals in eggor eggshell formation have been well revealed, and trace minerals are mainlyinvolved in the physiological activity processes for growth of reproductive tract and regulation of eggshell formation.



Figure2. Reproductive tract of the laying hens


Fe: Major pigment of brown eggshell is protoporphyrin, and porphyrins of eggshells are derived from erythrocytes. Fe supplementation will contribute to erythrocyte formation to improve eggshell color. One egg needs about 1.1 mg of Fe, and Fe deficiency will lead to nutritional anemia, also decrease pigment synthesis resulting in pale and dull of eggshell color.


Zn: Zn is a component of carbonic anhydrase that plays important role in CaCO3 deposition of eggshell. In addition, during calcite crystal formation, Zn will affect the crystal and texture morphologies of the eggshell. Zn also could repair the injury in epithelium cell of intestine and reproductive tract and maintain epithelium integrity.


Mn: As cofactor of mevalonate kinase and farnesyl pyrophosphate synthase, Mn regulates the synthesis of reproductive hormone precursor cholesterol. Furthermore, Mn acts as an activator of glycosyl transferase that is involved in synthesis of glycosaminoglycans and glycoproteins, which contribute to the formation of eggshell and make sure a good eggshell quality.


Cu: As a component of lysyl oxidase, Cu plays an important role in the formation of collagen in eggshell membrane and makes sure a good egg shape. In addition, as a component of ceruloplasmin, participates in the transport of iron ions, thus affecting the health of laying hen.


Main Factors of Influencing Trace Mineral Utilization in Laying Hen’s Daily Diet

High level of Ca: High level of Ca will reduce the utilization rate of Zn. The reason is that Zn phytate combines with Ca to form a more insoluble complex, which is extremely hard to digest. Therefore, if the concentration of Ca in the feed exceeds 1%, Zn supplementation should be increased to 70-100 mg/kg.


Phyticacid: Phytic acid has very strong chelating ability. Studies show that 1mol/L phyticacid will chelate 1-6 mol/L metal ions to form insoluble complex under the condition of intestinal pH value. And 1 g phytic acid can complex 500 mg iron ions. In particular, Zn is easily influenced by phytic acid (Fig. 3).


Antagonism: Ca2+ antagonizes Zn2+, Fe2+; Zn2+ antagonizes Fe2+; Fe2+ antagonizes Cu2+, these key interactions limit their own utilization in hen’s daily diet (Fig. 4). That is, Ca ion will inhibit the absorption of minerals ion due to minerals’ interactions. The possible reason is that they are all two valence positive ion, and they compete the same transport channel.


                           

Figure 3. Six Zn2+are seized by one phytic acid            Figure4. Antagonism among trace minerals


Other factors: Some adsorbents like montmorillonite have great adsorption ability, which causes deficiencies of trace minerals.


Advantages of Organic Trace Minerals in Hen’s Daily Diet

Establish sufficient mineral storage

As laying hens are usually pushed to produce more eggs for extended laying period, great safe and high bioavailability of organic trace minerals sources are taken into account to be used in intensive farming to increase the egg production. Organic trace minerals contribute to more deposition in early stage skeleton and tissue growth of young hens, which guarantee adequate trace minerals supply for later egg maturation, eggshell formation and ovulation process, and cope with the challenges of multi-stressors.    



                                                        Figure 5.


High bioavailability of minerals

Organically bound minerals can prevent the combination of indigestive phytate, and antagonisms (competition forabsorption) between trace minerals are avoided. Therefore, these organic trace minerals can be added into feed at a much lower concentration than the recommended levels without negative influence on performance and decreased excess mineral excretion.


Application of Organic Trace Minerals to Improve Eggshell Quality

Regulate carbonic anhydrase (CA)

CA is a zinc-containing enzyme and regarded as a vital enzyme in the deposition of calcium carbonate in eggshell. This enzyme catalyzes the hydration of metabolic CO2 to HCO3?, the precursor of eggshell carbonate. It is reported that diet supplemented with Zn amino acid chelate could improve eggshell quality by enhancing CA activity in the plasma and eggshell gland of aged layers (Y. N. Zhang et al, 2017).


Improve eggshell thickness and eggshell strength

Stefanello et al (2017) reports that there is greater shell thickness when hens fed with organic Zn, Mn and Cu. Increased eggshell strength (resistance to breakage) is observed in hens aged 40-60 weeks that have received organic Zn and Mn supplementation (Ludeen, 2001). The organic trace minerals are more efficient in eggshell formation and eggshell membrane, resulting in better egg quality and reducing profit loss.


Improve eggshell ultrastructure

Upon ultrastructural level, organic Mn, Zn, and Cu provide higher thickness of the palisade layer and lower mammillary density, and improve the structural characteristics and quality of the eggshell, which contributes to eggshell strength increase and less egg loss.



Figure6: Scanning electron microscopy of the cross section of the eggshell of laying hens. Palisade layer (pa), mammillary (ma).

Left: No trace minerals addition. Right: supplement Mn, Zn and Cu from an organic source, increased palisade layer thickness was observed, which indicates higher eggshell strength.



Figure7: Scanning electron microscopy of the inner surface of the eggshell of laying hens, mammillary buttons (mb) in left figure (no trace minerals addition) is clutter, higher density, indicated less resistant compared to organic trace mineral supplementation in the right.

















WeChat

亚洲无码视频在线播放 | 水蜜桃AV无码专区亚洲AV麻豆 | 给小姐毛片1级强奸毛片 | 午夜福利三级理论电影 | 黄色视频网站入口 | 国产又粗又猛又爽又黄 | 成人无码精品一区二区 | 一级毛片真人免费视频 | 人人妻澡人人爽人人DVD | 国产色情aⅴ一级毛片黄 | 国产人妻熟女a 6 2v久 | 人妻熟女 – 无名网 | 红桃视频成人A片免费观看 蜜桃av秘 无码一区二区 | 国产色欲婬乱免费视频高潮 | 日本A V在线播放 | 麻豆91精品一区二区不卡 | 久久久伦鲁鲁鲁免费高清 | 四川少BBB搡BBB爽爽爽 | 欧美大黑BBBBBBBBB喷水 | 7777理论片午夜无码 | 91丨九色丨首页人妻 | whichAV最新中文视频 | 91亚洲精品乱码久久久久久蜜桃 | 久久婷婷一区二区三区四区 | 玩爽少妇性妇科一区二区 | 国产亚洲日韩AV在线观看 | 国产特级毛片A片WWW | 日本親子亂子倫XXXX50路 | 国产午夜成人免费看片 | 成人片亚洲AV在线观看 | 国产三级片网站在线观看 | 国产一级姪片A片高潮 | 国产Aα麻豆成人对白视频 人妻多毛丰满熟妇av无码 | 国产人妻互换一级毛片日本 | 午夜国产在线观看 | 国内自拍真实伦在线观看 | 国产精品无码人妻一区二区在线 | 狼人视频国产在线观看 | 东北少妇BBBB搡BBB搡 | 四川少妇搡bbw搡bbbb | 在线观看免费视频麻豆 |